206 research outputs found

    Nitrate removal in stream ecosystems measured by 15N addition experiments: Denitrification

    Get PDF
    We measured denitrification rates using a field 15NO3− tracer-addition approach in a large, cross-site study of nitrate uptake in reference, agricultural, and suburban-urban streams. We measured denitrification rates in 49 of 72 streams studied. Uptake length due to denitrification (SWdenn) ranged from 89 m to 184 km (median of 9050 m) and there were no significant differences among regions or land-use categories, likely because of the wide range of conditions within each region and land use. N2 production rates far exceeded N2O production rates in all streams. The fraction of total NO3− removal from water due to denitrification ranged from 0.5% to 100% among streams (median of 16%), and was related to NH4+ concentration and ecosystem respiration rate (ER). Multivariate approaches showed that the most important factors controlling SWden were specific discharge (discharge / width) and NO3− concentration (positive effects), and ER and transient storage zones (negative effects). The relationship between areal denitrification rate (Uden) and NO3− concentration indicated a partial saturation effect. A power function with an exponent of 0.5 described this relationship better than a Michaelis-Menten equation. Although Uden increased with increasing NO3− concentration, the efficiency of NO3− removal from water via denitrification declined, resulting in a smaller proportion of streamwater NO3− load removed over a given length of stream. Regional differences in stream denitrification rates were small relative to the proximate factors of NO3− concentration and ecosystem respiration rate, and land use was an important but indirect control on denitrification in streams, primarily via its effect on NO3− concentration

    F-theory, GUTs, and the Weak Scale

    Full text link
    In this paper we study a deformation of gauge mediated supersymmetry breaking in a class of local F-theory GUT models where the scale of supersymmetry breaking determines the value of the mu term. Geometrically correlating these two scales constrains the soft SUSY breaking parameters of the MSSM. In this scenario, the hidden SUSY breaking sector involves an anomalous U(1) Peccei-Quinn symmetry which forbids bare mu and B mu terms. This sector typically breaks supersymmetry at the desired range of energy scales through a simple stringy hybrid of a Fayet and Polonyi model. A variant of the Giudice-Masiero mechanism generates the value mu ~ 10^2 - 10^3 GeV when the hidden sector scale of supersymmetry breaking is F^(1/2) ~ 10^(8.5) GeV. Further, the B mu problem is solved due to the mild hierarchy between the GUT scale and Planck scale. These models relate SUSY breaking with the QCD axion, and solve the strong CP problem through an axion with decay constant f_a ~ M_(GUT) * mu / L, where L ~ 10^5 GeV is the characteristic scale of gaugino mass unification in gauge mediated models, and the ratio \mu / L ~ M_(GUT)/M_(pl) ~ 10^(-3). We find f_a ~ 10^12 GeV, which is near the high end of the phenomenologically viable window. Here, the axino is the goldstino mode which is eaten by the gravitino. The gravitino is the LSP with a mass of about 10^1 - 10^2 MeV, and a bino-like neutralino is (typically) the NLSP with mass of about 10^2 - 10^3 GeV. Compatibility with electroweak symmetry breaking also determines the value of tan(beta) ~ 30 +/- 7.Comment: v3: 94 pages, 9 figures, clarification of Fayet-Polonyi model and instanton corrections to axion potentia

    Optimization of fluorophores for chemical tagging and immunohistochemistry of Drosophila neurons.

    Get PDF
    The use of genetically encoded 'self-labeling tags' with chemical fluorophore ligands enables rapid labeling of specific cells in neural tissue. To improve the chemical tagging of neurons, we synthesized and evaluated new fluorophore ligands based on Cy, Janelia Fluor, Alexa Fluor, and ATTO dyes and tested these with recently improved Drosophila melanogaster transgenes. We found that tissue clearing and mounting in DPX substantially improves signal quality when combined with specific non-cyanine fluorophores. We compared and combined this labeling technique with standard immunohistochemistry in the Drosophila brain.This work was supported by Howard Hughes Medical Institute (https://www.hhmi.org), the Medical Research Council (https://mrc.ukri.org; MRC file reference U105188491) and a European Research Council (https://erc.europa.eu) Consolidator grant (649111) to G.S.X.E.J., and a Royal Society (https://royalsociety.org) Dorothy Hodgkin Fellowship to S.C

    Observation of a Reflected Shock in an Indirectly Driven Spherical Implosion at the National Ignition Facility

    Get PDF
    A 200  μm radius hot spot at more than 2 keV temperature, 1  g/cm[superscript 3] density has been achieved on the National Ignition Facility using a near vacuum hohlraum. The implosion exhibits ideal one-dimensional behavior and 99% laser-to-hohlraum coupling. The low opacity of the remaining shell at bang time allows for a measurement of the x-ray emission of the reflected central shock in a deuterium plasma. Comparison with 1D hydrodynamic simulations puts constraints on electron-ion collisions and heat conduction. Results are consistent with classical (Spitzer-Harm) heat flux.United States. Dept. of Energy (Contract DE-AC52-07NA27344)Brookhaven National Laboratory (Laboratory Directed Research and Development Grant 11-ERD-050

    First-Borns Carry a Higher Metabolic Risk in Early Adulthood: Evidence from a Prospective Cohort Study

    Get PDF
    Birth order has been associated with early growth variability and subsequent increased adiposity, but the consequent effects of increased fat mass on metabolic risk during adulthood have not been assessed. We aimed to quantify the metabolic risk in young adulthood of being first-born relative to those born second or subsequently.Body composition and metabolic risk were assessed in 2,249 men, aged 17-19 years, from a birth cohort in southern Brazil. Metabolic risk was assessed using a composite z-score integrating standardized measurements of blood pressure, total cholesterol, high density lipoprotein, triglycerides and fat mass. First-borns had lower birth weight z-score (Δ = -0.25, 95%CI -0.35, -0.15,p<0.001) but showed greater weight gain during infancy (change in weight z-score from birth to 20 months: Δ = 0.39, 95%CI 0.28-0.50, p<0.0001) and had greater mean height (Δ = 1.2 cm, 95%CI: 0.7-1.6, p<0.0001) and weight (Δ = 0.34 kg, 95%CI: 0.13-0.55, p<0.002) at 43 months. This greater weight and height tracked into early adulthood, with first-borns being significantly taller, heavier and with significantly higher fat mass than later-borns. The metabolic risk z-score was significantly higher in first-borns.First-born status is associated with significantly elevated adiposity and metabolic risk in young adult men in Brazil. Our results, linking cardiovascular risk with life history variables, suggest that metabolic risk may be associated with the worldwide trend to smaller family size and it may interact with changes in behavioural or environmental risk factors

    Stream denitrification across biomes and its response to anthropogenic nitrate loading

    Get PDF
    Author Posting. © The Author(s), 2008. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature 452 (2008): 202-205, doi:10.1038/nature06686.Worldwide, anthropogenic addition of bioavailable nitrogen (N) to the biosphere is increasing and terrestrial ecosystems are becoming increasingly N saturated, causing more bioavailable N to enter groundwater and surface waters. Large-scale N budgets show that an average of about 20-25% of the N added to the biosphere is exported from rivers to the ocean or inland basins, indicating substantial sinks for N must exist in the landscape. Streams and rivers may be important sinks for bioavailable N owing to their hydrologic connections with terrestrial systems, high rates of biological activity, and streambed sediment environments that favor microbial denitrification. Here, using data from 15N tracer experiments replicated across 72 streams and 8 regions representing several biomes, we show that total biotic uptake and denitrification of nitrate increase with stream nitrate concentration, but that the efficiency of biotic uptake and denitrification declines as concentration increases, reducing the proportion of instream nitrate that is removed from transport. Total uptake of nitrate was related to ecosystem photosynthesis and denitrification was related to ecosystem respiration. Additionally, we use a stream network model to demonstrate that excess nitrate in streams elicits a disproportionate increase in the fraction of nitrate that is exported to receiving waters and reduces the relative role of small versus large streams as nitrate sinks.Funding for this research was provided by the National Science Foundation

    TNFAIP3 Maintains Intestinal Barrier Function and Supports Epithelial Cell Tight Junctions

    Get PDF
    Tight junctions between intestinal epithelial cells mediate the permeability of the intestinal barrier, and loss of intestinal barrier function mediated by TNF signaling is associated with the inflammatory pathophysiology observed in Crohn's disease and celiac disease. Thus, factors that modulate intestinal epithelial cell response to TNF may be critical for the maintenance of barrier function. TNF alpha-induced protein 3 (TNFAIP3) is a cytosolic protein that acts in a negative feedback loop to regulate cell signaling induced by Toll-like receptor ligands and TNF, suggesting that TNFAIP3 may play a role in regulating the intestinal barrier. To investigate the specific role of TNFAIP3 in intestinal barrier function we assessed barrier permeability in TNFAIP3−/− mice and LPS-treated villin-TNFAIP3 transgenic mice. TNFAIP3−/− mice had greater intestinal permeability compared to wild-type littermates, while villin-TNFAIP3 transgenic mice were protected from increases in permeability seen within LPS-treated wild-type littermates, indicating that barrier permeability is controlled by TNFAIP3. In cultured human intestinal epithelial cell lines, TNFAIP3 expression regulated both TNF-induced and myosin light chain kinase-regulated tight junction dynamics but did not affect myosin light chain kinase activity. Immunohistochemistry of mouse intestine revealed that TNFAIP3 expression inhibits LPS-induced loss of the tight junction protein occludin from the apical border of the intestinal epithelium. We also found that TNFAIP3 deubiquitinates polyubiquitinated occludin. These in vivo and in vitro studies support the role of TNFAIP3 in promoting intestinal epithelial barrier integrity and demonstrate its novel ability to maintain intestinal homeostasis through tight junction protein regulation

    Priorities for synthesis research in ecology and environmental science

    Get PDF
    ACKNOWLEDGMENTS We thank the National Science Foundation grant #1940692 for financial support for this workshop, and the National Center for Ecological Analysis and Synthesis (NCEAS) and its staff for logistical support.Peer reviewedPublisher PD
    corecore